3.3.90 \(\int \frac {\sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx\) [290]

Optimal. Leaf size=100 \[ \frac {2 \sqrt {a} (B c-A d) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{d^{3/2} \sqrt {c+d} f}-\frac {2 a B \cos (e+f x)}{d f \sqrt {a+a \sin (e+f x)}} \]

[Out]

2*(-A*d+B*c)*arctanh(cos(f*x+e)*a^(1/2)*d^(1/2)/(c+d)^(1/2)/(a+a*sin(f*x+e))^(1/2))*a^(1/2)/d^(3/2)/f/(c+d)^(1
/2)-2*a*B*cos(f*x+e)/d/f/(a+a*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {3060, 2852, 214} \begin {gather*} \frac {2 \sqrt {a} (B c-A d) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a \sin (e+f x)+a}}\right )}{d^{3/2} f \sqrt {c+d}}-\frac {2 a B \cos (e+f x)}{d f \sqrt {a \sin (e+f x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a + a*Sin[e + f*x]]*(A + B*Sin[e + f*x]))/(c + d*Sin[e + f*x]),x]

[Out]

(2*Sqrt[a]*(B*c - A*d)*ArcTanh[(Sqrt[a]*Sqrt[d]*Cos[e + f*x])/(Sqrt[c + d]*Sqrt[a + a*Sin[e + f*x]])])/(d^(3/2
)*Sqrt[c + d]*f) - (2*a*B*Cos[e + f*x])/(d*f*Sqrt[a + a*Sin[e + f*x]])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x))}{c+d \sin (e+f x)} \, dx &=-\frac {2 a B \cos (e+f x)}{d f \sqrt {a+a \sin (e+f x)}}+\frac {(-a B c+a A d) \int \frac {\sqrt {a+a \sin (e+f x)}}{c+d \sin (e+f x)} \, dx}{a d}\\ &=-\frac {2 a B \cos (e+f x)}{d f \sqrt {a+a \sin (e+f x)}}+\frac {(2 a (B c-A d)) \text {Subst}\left (\int \frac {1}{a c+a d-d x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{d f}\\ &=\frac {2 \sqrt {a} (B c-A d) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {d} \cos (e+f x)}{\sqrt {c+d} \sqrt {a+a \sin (e+f x)}}\right )}{d^{3/2} \sqrt {c+d} f}-\frac {2 a B \cos (e+f x)}{d f \sqrt {a+a \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 6.34, size = 903, normalized size = 9.03 \begin {gather*} \frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \left (-\frac {(2-2 i) B \sqrt {d} \cos \left (\frac {f x}{2}\right ) \left (\cos \left (\frac {e}{2}\right )-\sin \left (\frac {e}{2}\right )\right )}{f}+\frac {(-B c+A d) \left (\cos \left (\frac {e}{2}\right )+i \sin \left (\frac {e}{2}\right )\right ) \left ((-1+i) x \cos (e)+\frac {\text {RootSum}\left [-d+2 i c e^{i e} \text {$\#$1}^2+d e^{2 i e} \text {$\#$1}^4\&,\frac {(1+i) d \sqrt {e^{-i e}} f x-(2-2 i) d \sqrt {e^{-i e}} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right )-i \sqrt {d} \sqrt {c+d} f x \text {$\#$1}+2 \sqrt {d} \sqrt {c+d} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}+\frac {(1-i) c f x \text {$\#$1}^2}{\sqrt {e^{-i e}}}+\frac {(2+2 i) c \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {e^{-i e}}}-\sqrt {d} \sqrt {c+d} e^{i e} f x \text {$\#$1}^3-2 i \sqrt {d} \sqrt {c+d} e^{i e} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^3}{d-i c e^{i e} \text {$\#$1}^2}\&\right ] (\cos (e)+i (-1+\sin (e))) \sqrt {\cos (e)-i \sin (e)}}{4 f}+(1+i) x \sin (e)\right )}{\sqrt {c+d} (\cos (e)+i (-1+\sin (e))) \sqrt {\cos (e)-i \sin (e)}}+\frac {(-B c+A d) \left (\cos \left (\frac {e}{2}\right )+i \sin \left (\frac {e}{2}\right )\right ) \left ((1-i) x \cos (e)-(1+i) x \sin (e)+\frac {\text {RootSum}\left [-d+2 i c e^{i e} \text {$\#$1}^2+d e^{2 i e} \text {$\#$1}^4\&,\frac {(1-i) d \sqrt {e^{-i e}} f x+(2+2 i) d \sqrt {e^{-i e}} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right )+\sqrt {d} \sqrt {c+d} f x \text {$\#$1}+2 i \sqrt {d} \sqrt {c+d} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}-\frac {(1+i) c f x \text {$\#$1}^2}{\sqrt {e^{-i e}}}+\frac {(2-2 i) c \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {e^{-i e}}}-i \sqrt {d} \sqrt {c+d} e^{i e} f x \text {$\#$1}^3+2 \sqrt {d} \sqrt {c+d} e^{i e} \log \left (e^{\frac {i f x}{2}}-\text {$\#$1}\right ) \text {$\#$1}^3}{d-i c e^{i e} \text {$\#$1}^2}\&\right ] \sqrt {\cos (e)-i \sin (e)} (-1-i \cos (e)+\sin (e))}{4 f}\right )}{\sqrt {c+d} (\cos (e)+i (-1+\sin (e))) \sqrt {\cos (e)-i \sin (e)}}+\frac {(2-2 i) B \sqrt {d} \left (\cos \left (\frac {e}{2}\right )+\sin \left (\frac {e}{2}\right )\right ) \sin \left (\frac {f x}{2}\right )}{f}\right ) \sqrt {a (1+\sin (e+f x))}}{d^{3/2} \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a + a*Sin[e + f*x]]*(A + B*Sin[e + f*x]))/(c + d*Sin[e + f*x]),x]

[Out]

((1/2 + I/2)*(((-2 + 2*I)*B*Sqrt[d]*Cos[(f*x)/2]*(Cos[e/2] - Sin[e/2]))/f + ((-(B*c) + A*d)*(Cos[e/2] + I*Sin[
e/2])*((-1 + I)*x*Cos[e] + (RootSum[-d + (2*I)*c*E^(I*e)*#1^2 + d*E^((2*I)*e)*#1^4 & , ((1 + I)*d*Sqrt[E^((-I)
*e)]*f*x - (2 - 2*I)*d*Sqrt[E^((-I)*e)]*Log[E^((I/2)*f*x) - #1] - I*Sqrt[d]*Sqrt[c + d]*f*x*#1 + 2*Sqrt[d]*Sqr
t[c + d]*Log[E^((I/2)*f*x) - #1]*#1 + ((1 - I)*c*f*x*#1^2)/Sqrt[E^((-I)*e)] + ((2 + 2*I)*c*Log[E^((I/2)*f*x) -
 #1]*#1^2)/Sqrt[E^((-I)*e)] - Sqrt[d]*Sqrt[c + d]*E^(I*e)*f*x*#1^3 - (2*I)*Sqrt[d]*Sqrt[c + d]*E^(I*e)*Log[E^(
(I/2)*f*x) - #1]*#1^3)/(d - I*c*E^(I*e)*#1^2) & ]*(Cos[e] + I*(-1 + Sin[e]))*Sqrt[Cos[e] - I*Sin[e]])/(4*f) +
(1 + I)*x*Sin[e]))/(Sqrt[c + d]*(Cos[e] + I*(-1 + Sin[e]))*Sqrt[Cos[e] - I*Sin[e]]) + ((-(B*c) + A*d)*(Cos[e/2
] + I*Sin[e/2])*((1 - I)*x*Cos[e] - (1 + I)*x*Sin[e] + (RootSum[-d + (2*I)*c*E^(I*e)*#1^2 + d*E^((2*I)*e)*#1^4
 & , ((1 - I)*d*Sqrt[E^((-I)*e)]*f*x + (2 + 2*I)*d*Sqrt[E^((-I)*e)]*Log[E^((I/2)*f*x) - #1] + Sqrt[d]*Sqrt[c +
 d]*f*x*#1 + (2*I)*Sqrt[d]*Sqrt[c + d]*Log[E^((I/2)*f*x) - #1]*#1 - ((1 + I)*c*f*x*#1^2)/Sqrt[E^((-I)*e)] + ((
2 - 2*I)*c*Log[E^((I/2)*f*x) - #1]*#1^2)/Sqrt[E^((-I)*e)] - I*Sqrt[d]*Sqrt[c + d]*E^(I*e)*f*x*#1^3 + 2*Sqrt[d]
*Sqrt[c + d]*E^(I*e)*Log[E^((I/2)*f*x) - #1]*#1^3)/(d - I*c*E^(I*e)*#1^2) & ]*Sqrt[Cos[e] - I*Sin[e]]*(-1 - I*
Cos[e] + Sin[e]))/(4*f)))/(Sqrt[c + d]*(Cos[e] + I*(-1 + Sin[e]))*Sqrt[Cos[e] - I*Sin[e]]) + ((2 - 2*I)*B*Sqrt
[d]*(Cos[e/2] + Sin[e/2])*Sin[(f*x)/2])/f)*Sqrt[a*(1 + Sin[e + f*x])])/(d^(3/2)*(Cos[(e + f*x)/2] + Sin[(e + f
*x)/2]))

________________________________________________________________________________________

Maple [A]
time = 8.02, size = 139, normalized size = 1.39

method result size
default \(-\frac {2 \left (1+\sin \left (f x +e \right )\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (A \arctanh \left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right ) a d -B \arctanh \left (\frac {\sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, d}{\sqrt {a \left (c +d \right ) d}}\right ) a c +B \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (c +d \right ) d}\right )}{d \sqrt {a \left (c +d \right ) d}\, \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(139\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

-2*(1+sin(f*x+e))*(-a*(sin(f*x+e)-1))^(1/2)*(A*arctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*a*d-B*ar
ctanh((-a*(sin(f*x+e)-1))^(1/2)*d/(a*(c+d)*d)^(1/2))*a*c+B*(-a*(sin(f*x+e)-1))^(1/2)*(a*(c+d)*d)^(1/2))/d/(a*(
c+d)*d)^(1/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)/(d*sin(f*x + e) + c), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 177 vs. \(2 (88) = 176\).
time = 0.87, size = 685, normalized size = 6.85 \begin {gather*} \left [-\frac {{\left (B c - A d + {\left (B c - A d\right )} \cos \left (f x + e\right ) + {\left (B c - A d\right )} \sin \left (f x + e\right )\right )} \sqrt {\frac {a}{c d + d^{2}}} \log \left (\frac {a d^{2} \cos \left (f x + e\right )^{3} - a c^{2} - 2 \, a c d - a d^{2} - {\left (6 \, a c d + 7 \, a d^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left (c^{2} d + 4 \, c d^{2} + 3 \, d^{3} - {\left (c d^{2} + d^{3}\right )} \cos \left (f x + e\right )^{2} + {\left (c^{2} d + 3 \, c d^{2} + 2 \, d^{3}\right )} \cos \left (f x + e\right ) - {\left (c^{2} d + 4 \, c d^{2} + 3 \, d^{3} + {\left (c d^{2} + d^{3}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {\frac {a}{c d + d^{2}}} - {\left (a c^{2} + 8 \, a c d + 9 \, a d^{2}\right )} \cos \left (f x + e\right ) + {\left (a d^{2} \cos \left (f x + e\right )^{2} - a c^{2} - 2 \, a c d - a d^{2} + 2 \, {\left (3 \, a c d + 4 \, a d^{2}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{d^{2} \cos \left (f x + e\right )^{3} + {\left (2 \, c d + d^{2}\right )} \cos \left (f x + e\right )^{2} - c^{2} - 2 \, c d - d^{2} - {\left (c^{2} + d^{2}\right )} \cos \left (f x + e\right ) + {\left (d^{2} \cos \left (f x + e\right )^{2} - 2 \, c d \cos \left (f x + e\right ) - c^{2} - 2 \, c d - d^{2}\right )} \sin \left (f x + e\right )}\right ) + 4 \, {\left (B \cos \left (f x + e\right ) - B \sin \left (f x + e\right ) + B\right )} \sqrt {a \sin \left (f x + e\right ) + a}}{2 \, {\left (d f \cos \left (f x + e\right ) + d f \sin \left (f x + e\right ) + d f\right )}}, \frac {{\left (B c - A d + {\left (B c - A d\right )} \cos \left (f x + e\right ) + {\left (B c - A d\right )} \sin \left (f x + e\right )\right )} \sqrt {-\frac {a}{c d + d^{2}}} \arctan \left (\frac {\sqrt {a \sin \left (f x + e\right ) + a} {\left (d \sin \left (f x + e\right ) - c - 2 \, d\right )} \sqrt {-\frac {a}{c d + d^{2}}}}{2 \, a \cos \left (f x + e\right )}\right ) - 2 \, {\left (B \cos \left (f x + e\right ) - B \sin \left (f x + e\right ) + B\right )} \sqrt {a \sin \left (f x + e\right ) + a}}{d f \cos \left (f x + e\right ) + d f \sin \left (f x + e\right ) + d f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, algorithm="fricas")

[Out]

[-1/2*((B*c - A*d + (B*c - A*d)*cos(f*x + e) + (B*c - A*d)*sin(f*x + e))*sqrt(a/(c*d + d^2))*log((a*d^2*cos(f*
x + e)^3 - a*c^2 - 2*a*c*d - a*d^2 - (6*a*c*d + 7*a*d^2)*cos(f*x + e)^2 + 4*(c^2*d + 4*c*d^2 + 3*d^3 - (c*d^2
+ d^3)*cos(f*x + e)^2 + (c^2*d + 3*c*d^2 + 2*d^3)*cos(f*x + e) - (c^2*d + 4*c*d^2 + 3*d^3 + (c*d^2 + d^3)*cos(
f*x + e))*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(a/(c*d + d^2)) - (a*c^2 + 8*a*c*d + 9*a*d^2)*cos(f*x + e
) + (a*d^2*cos(f*x + e)^2 - a*c^2 - 2*a*c*d - a*d^2 + 2*(3*a*c*d + 4*a*d^2)*cos(f*x + e))*sin(f*x + e))/(d^2*c
os(f*x + e)^3 + (2*c*d + d^2)*cos(f*x + e)^2 - c^2 - 2*c*d - d^2 - (c^2 + d^2)*cos(f*x + e) + (d^2*cos(f*x + e
)^2 - 2*c*d*cos(f*x + e) - c^2 - 2*c*d - d^2)*sin(f*x + e))) + 4*(B*cos(f*x + e) - B*sin(f*x + e) + B)*sqrt(a*
sin(f*x + e) + a))/(d*f*cos(f*x + e) + d*f*sin(f*x + e) + d*f), ((B*c - A*d + (B*c - A*d)*cos(f*x + e) + (B*c
- A*d)*sin(f*x + e))*sqrt(-a/(c*d + d^2))*arctan(1/2*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e) - c - 2*d)*sqrt(
-a/(c*d + d^2))/(a*cos(f*x + e))) - 2*(B*cos(f*x + e) - B*sin(f*x + e) + B)*sqrt(a*sin(f*x + e) + a))/(d*f*cos
(f*x + e) + d*f*sin(f*x + e) + d*f)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))**(1/2)/(c+d*sin(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.49, size = 130, normalized size = 1.30 \begin {gather*} \frac {\sqrt {2} {\left (\frac {2 \, B \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{d} + \frac {\sqrt {2} {\left (B c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - A d \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \arctan \left (\frac {\sqrt {2} d \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{\sqrt {-c d - d^{2}}}\right )}{\sqrt {-c d - d^{2}} d}\right )} \sqrt {a}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sin(f*x+e))*(a+a*sin(f*x+e))^(1/2)/(c+d*sin(f*x+e)),x, algorithm="giac")

[Out]

sqrt(2)*(2*B*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)/d + sqrt(2)*(B*c*sgn(cos(-1/4*
pi + 1/2*f*x + 1/2*e)) - A*d*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*arctan(sqrt(2)*d*sin(-1/4*pi + 1/2*f*x + 1/2
*e)/sqrt(-c*d - d^2))/(sqrt(-c*d - d^2)*d))*sqrt(a)/f

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{c+d\,\sin \left (e+f\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(1/2))/(c + d*sin(e + f*x)),x)

[Out]

int(((A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(1/2))/(c + d*sin(e + f*x)), x)

________________________________________________________________________________________